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The effect of proof-testing on the Weibull 
distribution 

D. G. H A R L O W  
Department of Mechanical Engineering and Mechanics, Center for the ,4ppfication of 
Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015, USA 

The statistical aspects of proof-testing as they relate to the Weibull cumulative distribution 
function (cdf) are described. Properties of the truncated Weibull cdf which arise from proof- 
testing are presented. The need for accurate parameter estimation techniques is discussed, and 
the maximum likelihood (ML) method is developed for this application. Two examples are 
given which demonstrate the applicability and usefulness of the truncated Weibull cdf. One 
example, developed from proof-testing single filaments, illustrates the results for ungrouped 
data. The other, taken from an application of optical image analysis of creep cavities in stain- 
less steel, is an example of the analysis for grouped data. 

1. I n t r o d u c t i o n  
Proof-testing has become one of the standard prac- 
tices in many engineering applications. Some of the 
applications for which proof-testing is quite important 
include the various uses of modern composite mate- 
rials [1], the many functions realized by ceramics [2, 3], 
and optical fibres [4, 5]. The typical reasoning for 
employing proof-testing is as follows. Within a popu- 
lation there may be specimens which are sufficiently 
weak that the function of the material is severely 
impaired. Proof-testing the population will necessarily 
remove these weak specimens. Furthermore, there is a 
guaranteed minimum strength or time to failure which 
ensures the successful operation of the material 
beyond that value. Another heuristic scenario, at least 
for composite materials, concerns weak flaw sites 
within the material. The effect of the weak flaws may 
be minimized by applying a controlled proof-load 
which is a fraction of  the mean failure load. When the 
composite is loaded thereafter in service, the failure 
process is assumed to result from flaws which require 
strengths or times to failure in excess of the proof-load 
conditions. 

Based upon theoretical and empirical justifica- 
tions for engineering applications, the two-parameter 
Weibull cumulative distribution function (cdf) has 
become one of  the more popular models in use. 
Consequently, it is very natural for the Weibull cdf to 
arise as one of the basic models in cases for which 
proof-testing is helpful. Therefore, assume that X 
is a random variable whose cdf is the two-parameter 
Weibull cdf given by 

F ( x )  = P { X  <. x }  

= 1 - exp [ - (x / f i )  ~] x >/ 0, (1) 

where c~ and fl are the shape and scale parameters, 
respectively. 

Let xp be the proof-load applied t o  a specimen 
sampled from a population which is characterized by 
Equation 1. The conditional reliability for a specimen 
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with random variable X is the reliability for the 
residual of X, given that the specimen has been subjec- 
ted to Xp. Symbolically the conditional reliability is 

R(X]Xp) = P{X > xlX > x~} 

= exp { -  [(x/ f l)  ~ - (Xp/fl)~]} 

and the conditional cdf is 

X )  Xp 

(2) 

F ( x l x p )  = 1 - exp { -  [(x/fl)" - (xp/fl)~]} 

x > xp (3) 

Notice that Equation 3 is a truncated cdf. Trunca- 
tion occurs when it is impossible to select a sample or 
when it is impossible to observe a sample in some 
subset of the original sample space. In this case, the 
original sample space of [0, oo) is truncated at Xp so 
that the residual sample space is [Xp, oo). Herein, the 
truncation is assumed to occur only in the lower tail of  
the cdf. However, others, e.g. [6], have considered 
truncations in the upper tail to model random vari- 
ables for which there is a maximum upper limit. 

Most authors use Equation 3 or a related form for 
their proof-test analysis; see [1-5] as examples. How- 
ever, very few authors adequately focus upon the 
properties of Equation 3. Nelson [7] is one exception. 
He presents a few of the simple properties and the 
conditional expected value. He does not discuss higher 
order moments, and he only gives trivial examples for 
applications of  the truncated cdf. There is no discus- 
sion of  estimation techniques for the parameters. 
The only paper which discusses estimation of t h e  
parameters in the truncated Weibull cdfis by Charern- 
kavanich and Cohen [8]. Their work includes trunca- 
tion in the upper tail and in the lower tail. They 
develop two estimation techniques and asymptotic 
sampling errors for the estimates. However, they 
assume that the truncation point is unknown and 
must be estimated from the data as well as the other 
parameters. This is unreasonable for proof-testing 

1467 



applications because the proof-load is known, and the 
truncated Weibull cdf has only two parameters to 
estimate. Furthermore, their examples are sterile 
simulations motivated by their mathematical analyses 
rather than physically realizable ones supported by 
experimental data. 

In practice, essentially no one engages in any dis- 
cussion concerning techniques for estimating the 
parameters in Equation 3. A common implicit assump- 
tion is that the parametes e and/7 can be determined 
by analysis of failure data taken when no proof-load 
is applied and that those parameters are not effected 
by proof-loading. This assumption is suspect. Metals 
frequently undergo strain hardening or microyielding, 
and in some cases, these phenomena may occur at 
relatively low stress levels. Either of these conditions 
will tend to improve the reliability of the material. It 
is reasonable that these conditions must necessarily 
affect the parameters in Equation 3. For  composite 
materials there may be considerable micromechanical 
damage as a result of proof-loading and, in fact, the 
reliability can be substantially reduced [9, 10]. Again, 
the proof-loading does affect the statistical par- 
ameters. Thus, properly estimating the statistical par- 
ameters of the material with and without proof-testing 
can yield additional information about the material 
performance. In any case, the parameters should be 
estimated from the actual data and not inferred from 
data obtained under other loading conditions. 

Another closely related problem is incurred when- 
ever measurements are made at or near the limits of 
capability of the instrument. There very well may be 
measurable physical quantities which are truncated 
simply due to limitations in the instrumentation. This 
truncation is analogous to the proof-loading described 
above; however, there is no equivalent experiment to 
the case of no proof-loading. The truncation problem 
cannot be removed or ignored. 

Yet another related truncation problem occurs in 
experimental measurements when the desired quantity 
to be measured is contaminated by extraneous mate- 
rial. Often the contaminants and the desired quantities 

are indistinguishable by the instrumentation. In such 
cases, the data are frequently truncated to remove 
any contribution to the measurements and ensuing 
analyses from the contaminants. Without the trunca- 
tion, analysis of the data becomes considerably more 
difficult. 

The purpose of this paper is to characterize the 
truncated Weibull cdf Equation 1.3 which results in 
proof-testing and related problems. Both numerical 
and analytical results for the characterization are 
given. The maximum likelihood estimator (MLE) for 
the parameters in Equation 3 is developed for both 
grouped and ungrouped data. Finally, two examples 
are considered: one is from proof-testing single fila- 
ments and one is from an instrumentation truncation 
problem. 

2. Properties  of  the  truncated Weibull  
cdf  

The truncated Weibull cdf in Equation 3 obviously is 
identical to the standard two-parameter Weibull cdf 
when Xp = 0. To gain an appreciation for the differen- 
ces between the two forms. Fig. 1 is a graph on Weibull 
probability paper of Equation 3 for c~ = 5 and for 
xp = 0.0, 0.2/7, 0.4/7, 0.6/7 and 0.8/7. Notice that the 
upper tail is identical for each cdf, and that the lower 
tail rapidly turns downward as x approaches xp. For 
x slightly greater than xp, the improvement in the 
reliability of the proof-tested specimens compared to 
that for no proof-testing is manifest. For  an applied 
load less than Xp the truncated reliability is unity 
because the specimen has already been proof-loaded 
beyond that load. Similar observations could be made 
by comparing the probability density functions (pdf). 
The pdf of Equation 3 is 

f ( x l % )  = ( c t / / 7 ) ( x / / 7 )  ~ ' exp {-[(x//7) ~ - ( x p / / 7 ) ~ ] }  

x >~ xp (4) 

For the sake of completeness, the major properties 
of the truncated Weibull are given with little or no 
comment. The 100qth percentile xq is easily seen to be 

Xq = /7[(xp//7) ~ - In(1 - q)]~l~ (5) 

on (x/#)  
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Figure 1 C o m p a r i s o n  o f  t h e  s t an -  

d a r d  t w o - p a r a m e t e r  W e i b u l l  c d f  

w i t h  the  t w o - p a r a m e t e r  t r u n c a t e d  

W e i b u l l  cdf .  F(xlxp) = I - 

e x p  { - [ ( x / / 7 )  ~ - (xp//7)~]}, ~ = 

5.0. 
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The mode  xm is inferred f rom the p d f  (Equa t ion  4) to 
be 

Xm = fl[(C~- I)/C~] l/~ C~ ~> 1 (6) 

no so lu t ion  exists when c~ < 1. I t  should  be not iced 

tha t  the mode  does  not  depend  upon  the p r o o f - l o a d  
Xp. F o r  prac t ica l  pruposes ,  when c~ >~ 2, Xm > Xp. 
The  t runca ted  haza rd  funct ion h(x[Xp) na tura l ly  is 
given by 

h(xlxp)  = (~/~)(x/~) =-1 x > Xp (7) 

Except  for  the d o m a i n  o f  defini t ion,  Equa t ion  7 is 
ident ical  to the haza rd  funct ion for the s t anda rd  two- 
p a r a m e t e r  Weibul l  cdf. 

The  mos t  i m p o r t a n t  quant i t ies  which character ize  
the cdf  are  the momen t s .  Thus,  using the p d f  in 
Equa t ion  4, the t runca ted  momen t s  for  k ~> are 
defined by  the cond i t iona l  expec ta t ions  as follows: 

E(X  klxp) = I ~' xk f(XlXp) dx 
~Cp 

= fieF(1 + k/oO exp [(Xp/fi) ~] 

- P xkf(XlXp) dx (8) 

where F(x)  is the G a m m a  funct ion.  Again ,  note  tha t  
when Xp = 0, the t runca ted  m o m e n t  reduces to the 
co r r e spond ing  m o m e n t  for  the Weibul l  cdf. Two use- 
ful measures  o f  centra l  t endency  are  the coefficient o f  
var ia t ion ,  cv, defined as 

cv = (E{EX - g(Xlxp)] 2 [xp})l/2/E(Xlxp) (9) 

and  the coefficient o f  skewness,  cs, defined as 

cs = E { [ x -  E(Xlx~)]3}/  

(E{[X -- g ( x l  xp)]2 IXp })3/2 (10) 

The t runca ted  momen t s  mus t  be c o m p u t e d  numer i -  
cally except  for  the exponent ia l  case when ~ = 1. The 
integrals  are well behaved,  and  any s t anda rd  numer i -  
cal in tegra t ion  scheme will p roduce  acceptable  results. 
Assume  tha t  Xp = rfi for  some fract ion r, so tha t  the 
above  can be computed .  Typica l ly  0 ~< r ~< l ,  and  in 
fact, if the p roo f - l oad  is too  high the f rac t ion o f  the 
surviving specimens is too  low to be cost  and  opera-  
t ional ly  effective. Table  I conta ins  the mean/f i ,  the cv, 
and  the cs, for a few selected values o f  r and  ~. The  
general  t rend  is tha t  as ~ increases,  the cv decreases,  
and  for  fixed ~, the cv decreases as Xp increases.  
Both  o f  these cond i t ions  na tura l ly  reduce scatter.  I f  
c~ < 1.0, the cs decreases as x o increases; if g = 1.0, cs 
is cons tant ;  and  if ~ > 1.0, the cs increases as Xp 
increases. Not ice  tha t  for  the larger  values of  ~, the 
cdf  is skewed to the left for small  values o f  Xp, and  
it con t inuous ly  becomes  skewed to the r ight  as Xp 
increases. Co leman  [11] conta ins  a s imilar  table  for the 
single case of  Xp = 0. 

3. Max imum likelihood estimation 
3.1. Ungrouped data 
Even though  the t runca ted  Weibul l  cdf  in Equa t ion  3 
has only two paramete rs ,  there does no t  a p p e a r  to be 
any simple way to ob ta in  an es t imate  o f  e and  B. 
Because the M L  me thod  is very general  and  very effic- 
ient, it is well-sui ted for this appl ica t ion .  Let  the caret  

TABLE I The mean/fl, coefficient of 
ficient of .skewness cs, for the truncated 
proof-load is given by Xp = rfi 

variation cv, and coef- 
Weibull cdf, where the 

r mean/fl cv cs 

0.5 0.0 2.0000 2.2361 6.6188 
0.2 3.0944 1.7086 5.6620 
0.4 3.6649 1.5367 5.3583 
0.6 4.1492 1.4216 5.1534 
0.8 4.5889 1.3347 4.9969 
1.0 5.0000 1.2649 4.8699 

1.0 0.0 1.0000 1.0000 2.0000 
0.2 1.2000 0.8333 2.0000 
0.4 1.4000 0.7143 2.0000 
0.6 1.6000 0.6250 2.0000 
0.8 1.8000 0.5556 2.0000 
1.0 2.0000 0.5000 2.0000 

1.5 0.0 0.9027 0.6790 1.0720 
0.2 0.9761 0.6041 1.1645 
0.4 1.0957 0.5114 1.2623 
0.6 1.2363 0.4309 1.3452 
0.8 1.3896 0.3653 1.4148 
1.0 1.5517 0.3127 1.4735 

2.0 0.0 0.8862 0.5227 0.6311 
0.2 0.9170 0.4867 0.7264 
0.4 0.9945 0.4159 0.8759 
0.6 1.1032 0.3427 1.0189 
0.8 1.2335 0.2792 1.145l 
1.0 1.3789 0.2276 1.2539 

5.0 0.0 0.9182 0.2291 - 0.2541 
0.2 0.9184 0.2286 -0.2443 
0.4 0.9242 0.2193 - 0.1213 
0.6 0.9521 0.1873 0.1674 
0.8 1.0196 0.1365 0.5386 
1.0 1.1307 0.0866 0.9139 

10.0 0.0 0.9513 0.1203 -0.6376 
0.2 0.9513 0.1203 - 0.6367 
0.4 0.9514 0.1201 -0.6275 
0.6 0.9538 0.1156 -0.4672 
0.8 0.9770 0.0894 0.0555 
1.0 1.0624 0.0426 0.8136 

20.0 0.0 0.9735 0.0620 -0.8680 
0.6 0.9735 0.0619 - 0.8598 
0.8 0.9760 0.0574 - 0.5411 
1.0 1.0305 0.0212 0.7672 

( /x)  denote  the M L E s ,  as is cus tomary .  Assume  tha t  
the sample  failure da t a  (xi: 1 ~ i ~ n) is complete .  
The  p a r a m e t e r  es t imates  are ob ta ined  by maximiz ing  
the l ike l ihood funct ion 

L(2;  c~, fi) = n / ( x ~ ;  c~,/31x~), (11) 

w h e r e f ( x ;  ~, f l lxp) is the t runca ted  Weibul l  p d f  given 
in Equa t ion  4 and  where the p roduc t  is over  the index 
i, 1 ~ i ~< n. Af te r  s t ra igh t fo rward  a lgebraic  mani -  
pu la t ion  o f  Equa t ion  11, ~ is found  as the solut ion of  
the non l inear  equa t ion  

[ n - l y  xi - Xp] [(n/c0 + E In (xi)] 

- 2 ; x ~ l n ( x ~ )  + nxpln(xp)  = 0 (12) 

where the summat ions  here and hencefor th  are for the 
index i ranging  f rom 1 to n, unless it  is no ted  other-  
wise. Af ter  ob ta in ing  & from Equa t ion  12, fl is given by 

= [ n - ' Z  x, .a - x~] ~/~ (13) 

It  is advan tageous  to change the var iables  as fol- 
lows: let y~ = In (xi), and  let yp = In (Xp). Rewri t ing  
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Equation 12 yields 

(1 + c~p) Y,[exp (c~y~) - exp (c~yp)] 

- c~Z[y~exp (eye) - yp exp (C~yp)] = 0 (14) 

where 35 = ~ y~/n is the sample average of the trans- 
formed data. It is easy to see that both the first and 
second summations in the above difference are non- 
negative for c~ ~> 0. Furthermore, the derivatives with 
respect to c~ of the first and second summations in 
Equation 14 are also non-negative for c~ ~> 0. Because 
Equation 14 is trivially satisfied when e = 0, then 
there can be at most one solution &, i.e. & is unique, 
if it exists. 

The remaining problem is the numerical solution. It 
is expedient to utilize another change of variables. Let 
z~ = y~ - )5 and zp = yp - 35. Multiplying Equation 
14 by exp (-c~35) and rearranging the terms yields a 
function of c~, say h(e), defined as 

h(cO = n(C~Zp - 1) exp (C~Zp) 

+ 2(I - c~zi) exp (c~zi) = 0 (15) 

Equation 15 is equivalent to Equation 12; however, 
it is considerably more stable numerically. When 
xp = 0, h(c 0 is identical to the equation used by 
McCool [12]. 

Because the non-zero solution to Equation 15 is 
unique, the standard Newton-Raphson method for 
finding the root is quite efficient. The speed of the 
convergence of the method depends upon the initial 
guess for the root. It is suggested that the initial guess 
for & be 

&0 = [cv(n)] J/094 (16) 

where cv(n) is the sample coefficient of  variation. The 
guess is based on the well-known approximation 

cv ~ c~ 0.94 (17) 

for the Weibull cdf Equation 1. Even with a conver- 
gence criterion of  the difference between successive 
iterations being less than 10 -~~ the convergence 
typically terminates in less than ten iterations when 
Equation 16 is the initial guess. Additional comments 
on the numerical aspects will be included along with 
the examples in the following section. 

3.2. G r o u p e d  da ta  
Many instruments make such a large number of 
measurements that the only reasonable way in which 
to assimilate the data is to use grouping techniques. 
Examples of such instruments are scanning elec- 
tronic microscopes. For grouped data the likelihood 
function is 

L(~; c~,/~) = II [R(ai_ j  Ixp) - R ( a i l x p ) ]  d' (18) 

where R ( x l X p )  is given in Equation 2,/~ = [ai_ ~, ai) is 
the ith interval of  the range of the data, di is the 
number of  observations which fall within/~, and m is 
the total number of intervals. The index i is assumed 
to range from 1 to m, unless it is noted otherwise. For 
the truncated Weibull cdf, Equation 1 8 is considerably 
more tedious to maximize than the likelihood func- 
tion for ungrouped data, Equation l l. The system 
of equations for which the solution is the MLE is 

as follows 

s di [(x v/,6) ~ In (Xp//?) 

+ ({(a i /~)  ~ In (a j ,8 )  exp [ - ( a i / ~  ~] 

- (ai ,//?)~ in (ai ,//~) exp [ - (a i_ l / [3 )~] } /  

{exp [ -  (ai_l//~) ~] - exp [ -  (ai/B)~]})] = 0 

(19) 
and 

:C d , [ - ( ~ / / 3 )  (Xp/13) ~ 

+ ({(c~/fl) (ai_l/fl)~ exp [ -  (ai_1/fi)~] 

- (o://3) ( a j f l )  ~ exp [ -  (ai/fl)~]}/ 

{exp [ -  (ai_ 1/fl)~] - exp [ -  (aj f l )~]})]  = 0 

(20) 

Even though the equations cannot be simplified, 
the Newton-Raphson method again works well for 
this system. An initial guess which is analogous to 
Equation 16 for &0 and the sample mean for ~0 
yields a similar convergence behaviour to that des- 
cribed above. 

4 .  E x a m p l e s  
4.1.  U n g r o u p e d  da ta  
Because the fibres are primarily the load-bearing 
members in composite materials, their behaviour 
under proof-loading is critical to the entire structure 
under proof-loading. Phoenix and Wu [13] have done 
extensive testing of Kevlar fibres, and they have 
found the MLEs of the two-parameter Weibull cdf 
for their data with 79 sample points for the tensile 
strength of 5cm long Kevlar fibres to be & = 8.2 and 

= 3590 MPa. These values were used to simulate 
data under proof-loading conditions to illustrate some 
of the key points in the development. Fig. 2 is a 
graph on Weibull paper of 75 simulated failure 
strengths and the MLE truncated Weibull fit to the 
data assuming that previously a proof-load of Xp = 
0.5~ = 1795MPa had been applied to the fibres. 
Even with this small sample size the smallest data are 
best characterized by the concave downward portion 
of the curve. Larger sample sizes definitely would 
appear to be non-linear. The MLEs for this example 
are & = 7.9 and ~ = 3611 MPa. To demonstrate that 
the solution is unique, h(~) from Equation 15 is plot- 
ted for these data in Fig. 3. 

4.2.  G r o u p e d  da ta  
High-temperature creep is a major reason for failure 
in turbine engines, steam pipes, and nuclear breeder 
reactors. The damage and ultimate failure is due to 
the nucleation, growth, and coalescence of voids 
(Liu el  al. [14] and Fariborz et  al. [15, 16]). Specimens 
subjected to creep have times to failure which vary 
by as much as 300%. This scatter is due to the sto- 
chastic behaviour of the voids. The voids are randomly 
scattered throughout each specimen, and they are 
randomly distributed in size. The total cavitated vol- 
ume in the specimen can be related ,to its residual life 
or residual strength. Thus, the distribution of the void 
sizes is very important in reliability computations. 
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F(XiXp) = 1 -- exp {--  [(x/fl) s -- 

(xv/fl)~]}, Xp = 1795MPa ,  ~ = 

7.9, ~ = 3611 MPa.  

I 

c 

t 

c 

In attempting to model the failure mechanism, 
specimens are crept for some fraction of the expected 
failure time. The specimens are then polished and 
etched. Voids can be seen under a microscope; in fact, 
some of the larger voids can be seen with the eye. 
One difficulty with this method is that only the dimen- 
sions and location of the cross-section of the void in 
the plane of  polish can be measured. That cross- 
section will usually not be congruent with one of the 
centroidal axes of the void. Hence, an estimation is 
required. Additionally, there will be voids which do 
not intersect the plane of polish. The size and number 
of these voids must be estimated as well. The estima- 
tion procedure is known as stereological analysis, and 
it yields estimates for void dimensions and the number 
of voids per unit volume (Liu et al. [17] and Cruz Orive 
[18, 19]). 

The data to be statistically analysed are a compila- 
tion from the stereological analyses of void measure- 
ments taken from flat, plane stress tensile specimens 
fabricated from strip stock of a commercial heat of 
AISI type 304 stainless steel. The tests were conducted 
in air at a temperature of  600 ~ C under constant load 

creep conditions, resulting in an applied stress of 
214 MPa for 776 h. For these conditions creep cavities 
are normally spheroidal. Consequently, the length of 
the major radius is of primary interest. 

Unfortunately two major problems occur in the 
measurements which taint the void data. One problem 
is that the optical scanning microscope has limita- 
tions for the minimum size of a void that can be 
measured. Voids nucleate in time according to a non- 
homogeneous Poisson process which implies that 
ordinarily there will be voids present in the specimen 
which are smaller than the measurement threshold of 
the instrument. It is manifest that these voids are 
truncated from the data. The other problem is an 
artefact of stainless steel. Stainless steel is fairly 
"dir ty" in that there are numerous grain-boundary 
inclusions and second-phase particles in the material. 
These are observable by the microscope. By statistic- 
ally analysing several uncrept specimens, it was found 
that inclusions and second-phase particles with a 
cross-sectional area up to 10 # m  2 w e r e  present in very 
substantial numbers. Because the. goal of estimating 
the void distributions is to estimate residual life or 
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Weibull cdf fitted to the grouped 
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residual strength and because the larger voids are 
primarily responsible for the amount  of  damage in the 
material, it was decided to simply truncate all the data 
below 10#m 2. Consequently this censoring elimina- 
ted some voids along with the "dirt".  Therefore, 
this truncation implies that the cavity radii in the 
stereological analysis are truncated below 1.80 pro. 

Under these assumptions, the MLE method for 
grouped data developed herein has been employed for 
the cavity radius. The data and the MLE truncated 
Weibull cdf are presented in Fig. 4. There are a total 
of  108 058 cavity radii grouped into 89 class intervals. 
The reason for grouping is obvious. Note that the 
truncated Weibull fits the data quite well. The esti- 
mated parameters are & = 0.85 and fi = 2.21/~m. 
The estimated mean from the cdf in Equation 3 
when Xp = 1.80pm is 4.64~m, the estimated cv is 
66.4%, and the estimated cs is 2.36. The correspond- 
ing values for the standard two-parameter Weibull cdf 
(Equation 1) when & and ~ are the same values are 
2.40#m, 118.1%, and 2.56, respectively. The mean 
is larger by 93%, and the scatter is reduced by 44% 
for the truncated Weibull model. Both of these are 
significant. The change in cs is not as pronounced. 

The large scatter indicated by the estimated cv 
clearly is observable from the Fig. 4. The physical 
reasoning for this scatter is that there are many small 
voids at any time due to the nucleation process. How- 
ever, it is the large voids which are relatively few in 
number that are most critical for the reliability of  the 
specimen. For this example, 94% of the voids have a 
radius less than 10/tm, and the remaining voids have 
a radius up to 46 #m. The volume of a cavity with a 
radius of 46/~m is approximately 20 times larger than 
one with a radius of  10 #m. The cavity with the larger 
radius causes a considerably larger stress concentra- 
tion in the material, and hence, it is more likely to 
produce further internal damage. Again, it is essential 
that the cavity radius cdf be estimated accurately. 
Thus, the method developed herein serves a critical 
function in the mechanical reliability estimation for 
the material. 

5. Conclusion 
A brief rationale for proof-testing has been given. 
Depending upon the application, the truncated 
Weibull cdf of  Equation 3 is well-suited to represent 
data obtained from a truncation or proof-loading 
procedure. This is demonstrated by the examples in 
Section 4. The ML method developed herein is essen- 
tial for these classes of  problems. In one instance the 
material may undergo substantial change during proof- 
loading in which case the parameters estimated from 
the material without proof-loading cannot represent 
adequately the change in the proof-loaded material. In 
the other case it may be impossible to estimate the 
parameters from a population which necessarily was 
truncated due to instrumentation limitations or due to 
contamination. Although the truncated Weibull cdf is 
not as familiar as the standard two-parameter Weibull 
cdf and is not as easy to manipulate, it is to be prefer- 
red for proof-testing problems. 

This paper is just an introduction to the statistics 
of  proof-loading and its application to the Weibull 
cdf. There are several more aspects which need con- 
sideration. For  example, confidence intervals for the 
estimated parameters, goodness-of-fit tests, and gen- 
eralizations to other types of  censoring need to be 
developed. This future work becomes more important  
as the applications of  proof-testing become more criti- 
cal. 
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